
IJMAR.net, Vol. 1, No. 1 Page 1 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

International Journal on Multidisciplinary and Applied Research
https://doi.org/10.63236/ijmar.1.1.3
Date received: 20/02/25; revised: 07/04/25; accepted: 25/05/25; published:
01/06/25

Vectorization and Finite Difference Methods: A
Powerful Partnership for Numerical Solutions

Pankaj Dumka
Department of Mechanical Engineering, Jaypee University of Engineering and
Technology, A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India
https://orcid.org/0000-0001-5799-6468

Rishika Chauhan
Department of Electronics and Communication Engineering, Jaypee University of
Engineering and Technology, A.B. Road, Raghogarh-473226, Guna, Madhya
Pradesh, India
https://orcid.org/0000-0001-8483-865X

Tapendra Verma
Department of Computer Science Engineering, Jaypee University of Engineering and
Technology, A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India
https://orcid.org/0009-0001-8788-1271

Corresponding author: Pankaj Dumka, p.dumka.ipec@gmail.com

Abstract
Numerical methods, especially finite difference schemes, are needed for solving
differential equations in the various scientific and engineering fields. These methods
frequently involve massive computations across large grids, which make the
computational efficiency a point of critical interest. Finite difference methods (FDMs)
are widely used for solving differential equations; however, their computational
efficiency is limited by the traditional loop-based operations. This study investigates
the impact of vectorization on FDM using Python's NumPy library. The
computational performance of vectorized against the loop-based implementations for
the forward, backward, and central finite difference schemes was applied and
examined for a typical trigonometric function, 𝑓(𝑥) = 𝑥 × 𝑠𝑖𝑛(𝑥), in the domain
(−𝜋, 𝜋). It has been observed that the vectorization reduces the execution time by
approximately 90% in comparison to the loop-based methods, with the execution
times for forward difference dropping from 12.3 ms (loop-based) to 1.2 ms
(vectorized) for a grid size of 𝑁 = 104. Similarly, backward and central difference
schemes have also shown a significant acceleration. These findings highlight the
critical role of vectorization in improving the computational efficiency for numerical
methods.

IJMAR.net, Vol. 1, No. 1 Page 2 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Keywords: finite difference methods, vectorization, NumPy, computational
efficiency, numerical analysis, Python programming

1. Introduction
Numerical methods serve as a foundation for solving differential equations in the
scientific and engineering applications (Dumka et al., 2022; Taylor et al., 1987; Usmani
& Taylor, 1983). Among these the finite difference methods (FDMs) offer a simple and
efficient approach for discretizing the problem domain (Khan & Ohba, 2000; Pawar et
al., 2022). By estimating the derivatives using differences between function values at
discrete grid points, the FDM transforms a differential equation into system of
algebraic equations that can be solved numerically (Özişik et al., 2017; T. &
Strikwerda, 1990). However, this transformation often comes with a computational
problem, principally when dealing with fine grids or higher-order approximations
(Anderssen & Hegland, 1999; Epperson, 2021). Traditional working often relies on
nested loops, which frequently introduce a significant performance blockage due to
repeated memory access and interpreter overhead (Ryder et al., 2005).

Recent advancements in high-performance computing give emphasis to the need for
optimized numerical algorithms that can influence the modern hardware
architectures (Carter et al., 2013; Milutinović et al., 2016). Vectorization is one such
optimization technique that allows the operations to be performed on entire arrays at
once, thereby avoiding the inefficiencies of iterative loops (Van Der Walt et al., 2011).
By utilizing vectorized operations through libraries such as NumPy (Bauckhage, 2020;
Johansson, 2018) in Python, computations can be significantly accelerated, particularly
for large-scale numerical simulations (Bauckhage, 2020; Johansson, 2018). According
to Watkinson et al. (2020), while Python’s simplicity makes it ideal for teaching, it
often hides critical performance and architecture concepts. Tools such as Numba and
NumbaSummarizer bridge this gap by enabling vectorization and helping students
understand parallelism and data dependencies. Their study showed that students
with even minimal background could effectively optimize loops and grasp parallel
computing principles. Srichandra et al. (2023) developed a variational autoencoder to
convert students' Python code from abstract syntax trees into linear vectors suitable
for the machine learning. This enables automated performance assessment, learning
path analysis, and hint generation. The model was successfully tested on real
classroom code submissions.

Despite its advantages, the vectorization remains underutilized in many scientific
computing applications owing to a lack of knowledge and understanding of its
potential impact on computational performance. Even with the increasing availability
of high-performance computing libraries, the explicit benefits of vectorization within
finite difference methods remain underexplored in current literature. Most existing
studies overlook implementation-level strategies that can significantly improve
computational efficiency for large-scale simulations. Thus, it is hypothesized that
applying vectorized operations using NumPy onto FDM will significantly reduce
computation time without compromising numerical accuracy.

IJMAR.net, Vol. 1, No. 1 Page 3 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

This article investigates the powerful interaction between the vectorization and the
FDM. It has been demonstrated how using the vectorized can dramatically enhance
computational speed while maintaining accuracy. A systematic comparison of the
traditional loop-based implementations with their vectorized counterparts has been
done by applying them to the numerical differentiation of the function 𝑓(𝑥) =
𝑥 × 𝑠𝑖𝑛(𝑥) in different configurations. Through thorough benchmarking, the
performance gains were quantified, thereby providing insights into best practices for
implementing vectorized numerical methods. The novelty of this study lies in its
detailed analysis of index manipulations which are a significant requirement for
efficient vectorization. This article will act as a practical guide for researchers and
engineers aiming to optimize their numerical simulations.

2. Vectorization
Vectorization refers to the process of implementing operations on entire arrays rather
than iterating through its individual elements. In traditional programming, loops are
used to iterate over data points, thus sequentially performing the computations (Van
Der Walt et al., 2011). This approach encounters significant overhead, particularly in
high-level languages (Python), where loops require repeated interpretation and
function calls (Watkinson et al., 2020). On the other hand, the vectorized operations
utilize optimized low-level implementations (often written in C/C++ or Fortran) that
operate on contiguous blocks of memory, thereby enabling parallel execution and
reducing the interpreter overhead (Yashar & Rashid, 2020).

Benefits of Vectorization

• Vectorization removes the need for explicit loops, thus, reducing the execution
time significantly. By operating on entire arrays at once, operations are
performed using highly optimized routines which lead to sizable acceleration
in numerical computations (Van Der Walt et al., 2011).

• Loop-based implementations often result in wasteful memory access patterns,
as each iteration fetches and processes the data separately. Vectorized
operations utilize contiguous memory locations, thus reducing cache misses
and enhancing data locality (Van Der Walt et al., 2011).

• By replacing loops with array-based statements, vectorized operations result in
more brief and readable code. This improves maintainability and reduces the
chances of indexing errors (Watkinson et al., 2020).

• Modern processors are equipped with vectorized instruction sets (such as AVX
and SSE), which allow simultaneous execution of multiple operations.
NumPy’s vectorized functions are optimized to utilize these capabilities which
further improves the computational efficiency (Yashar & Rashid, 2020).

3. Finite Difference Formulations and Vectorization
Finite difference approximations involve calculating differences between function
values at neighbouring grid points (Epperson, 2021; Shi et al., 2023). These calculations
are fundamentally parallelizable which makes them ideal candidate for vectorization.
NumPy's slicing capabilities allow us to access and manipulate entire sections of
arrays efficiently, thereby enabling the direct execution of finite difference stencils in
a vectorized form. The following is the explanation of how to apply this to find the

IJMAR.net, Vol. 1, No. 1 Page 4 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

forward, backward and central difference of first and second derivatives. Consider a
grid as shown in Figure 1. If one expands the Taylor series about the point 𝑖 in both
forward and backward direction, then the expression of the function at 𝑖 + 1 and 𝑖 − 1
nodes can be written as:

Figure 1 - Grid for one dimensional problem

𝑓𝑖+1 = 𝑓𝑖 +
𝑑𝑓

𝑑𝑥
Δ𝑥 +

𝑑2𝑓

𝑑𝑥2

Δ𝑥2

2!
+

𝑑3𝑓

𝑑𝑥3

Δ𝑥3

3!
+ ⋯ (1)

𝑓𝑖−1 = 𝑓𝑖 −
𝑑𝑓

𝑑𝑥
Δ𝑥 +

𝑑2𝑓

𝑑𝑥2

Δ𝑥2

2!
−

𝑑3𝑓

𝑑𝑥3

Δ𝑥3

3!
+ ⋯ (2)

From both the equations, if the terms of the order Δ𝑥 and above are neglected, then
the following formulas for the first derivative in the forward and backward directions
will come up (Dumka et al., 2022):

𝑑𝑓

𝑑𝑥
=

𝑓𝑖+1−𝑓𝑖

Δ𝑥
 (3)

𝑑𝑓

𝑑𝑥
=

𝑓𝑖−𝑓𝑖−1

Δ𝑥
 (4)

If the Eqn. (1) and (2) are added, then the formula for central difference for the first
derivative will come up whereas if they are subtracted, then the formula for the second
derivative will come up with an order of accuracy of Δ𝑥2, as shown by equations (5)
and (6), respectively (Dumka et al., 2022).

𝑑𝑓

𝑑𝑥
=

𝑓𝑖+1−𝑓𝑖−1

2Δ𝑥
 (5)

𝑑2𝑓

𝑑𝑥2 =
𝑓𝑖−2𝑓𝑖+𝑓𝑖−1

Δ𝑥2 (6)

It is important to understand the range of the iteration i.e. from what and till what
index the operation must perform. Table 1 shows the starting and ending indices for
all the finite difference formulations. The point to be noted is that the table has been
created considering that the indexes start with 0 in Python. If there are 𝑛 numbers,
then the last number will be at index 𝑛 − 1 not 𝑛. Therefore, if in a problem the
computation ends at second last index, then the ending index will be 𝑛 − 2 not 𝑛 − 1.
In Python, subtracting the ending index by one is automatically done while writing
the range one has to supply it as 𝑛 − 1 not as 𝑛 − 2.

Table 1- Range of iteration

Formula Start index End index

(
𝑑𝑓

𝑑𝑥
)

𝑓𝑑
 0 𝑛 − 1

(
𝑑𝑓

𝑑𝑥
)

𝑏𝑑
 1 𝑛

IJMAR.net, Vol. 1, No. 1 Page 5 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

(
𝑑𝑓

𝑑𝑥
)

𝑐𝑑
 1 𝑛 − 1

(
𝑑2𝑓

𝑑𝑥2
)

𝑐𝑑

 1 𝑛 − 1

Let us take a function 𝑓(𝑥) = 𝑥 × 𝑠𝑖𝑛(𝑥) and evaluate the derivatives of this function
from (−𝜋, 𝜋). The strategy involves first using a loop, giving an explanation as to
how to write the slicing index (vectorize) for different cases, and then solving it using
vectorization scheme.

To compare the performance of loop-based and vectorized implementations of FDMs,
Python scripts were developed using the NumPy and timeit modules. NumPy
provides support for efficient array operations and slicing techniques required for
vectorization, while the timeit module is employed for precise benchmarking of
execution time. The following libraries were used:

From numpy import *
From timeit import *

The function selected for derivative evaluation is written in Python as follows:

Function
Def fn(x):
 return x*sin(x)

A uniformly spaced grid over the domain [−𝜋, 𝜋] has been created with 10,000 points.
The step size 𝛥𝑥 is computed as follows:

N = 10000# Grid Size
Domain = (-pi, pi)
Δx = (Domain[1]-Domain[0])/(N-1)
x = linspace(Domain[0], Domain[1], N)

Four finite difference formulations were implemented using both loop-based and
vectorized approaches:

• First derivative (forward, backward, central)

• Second derivative (central)
Each implementation was wrapped inside a function to isolate its computation,
allowing accurate timing using timeit. Execution times were averaged over 100 runs
to eliminate background noise:

def time_dfdx_fd_loop():
 dfdx_fd_loop = zeros(N)
 for i in range(N - 1):
 dfdx_fd_loop[i] = (fn(x[i+1])-fn(x[i]))/Δx
 return dfdx_fd_loop

IJMAR.net, Vol. 1, No. 1 Page 6 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

def time_dfdx_bd_loop():
 dfdx_bd_loop = zeros(N)
 for i in range(1, N):
 dfdx_bd_loop[i] = (fn(x[i])-fn(x[i-1]))/Δx
 return d fdx_bd_loop

def time_dfdx_cd_loop():
 dfdx_cd_loop = zeros(N)
 for i in range(1, N - 1):
 dfdx_cd_loop[i] = (fn(x[i+1])-fn(x[i-1]))/(2*Δx)
 return dfdx_cd_loop

def time_d2fdx2_cd_loop():
 d2fdx2_cd_loop = zeros(N)
 for i in range(1, N - 1):
 d2fdx2_cd_loop[i] = (fn(x[i+1])-2*fn(x[i])+fn(x[i-1]))/Δx**2
 return d2fdx2_cd_loop

num_runs = 100

dfdx_fd_loop_time = timeit(time_dfdx_fd_loop,number=num_runs) / num_runs *
1000
dfdx_bd_loop_time = timeit(time_dfdx_bd_loop, number=num_runs) / num_runs
* 1000
dfdx_cd_loop_time = timeit(time_dfdx_cd_loop, number=num_runs) / num_runs
* 1000
d2fdx2_cd_loop_time = timeit(time_d2fdx2_cd_loop, number=num_runs) /
num_runs * 1000

print(f"dfdx_fd_loop_time: {dfdx_fd_loop_time:.4f} ms")
print(f"dfdx_bd_loop_time: {dfdx_bd_loop_time:.4f} ms")
print(f"dfdx_cd_loop_time: {dfdx_cd_loop_time:.4f} ms")
print(f"d2fdx2_cd_loop_time: {d2fdx2_cd_loop_time:.4f} ms")

The unit of execution time is milliseconds (ms). The print() statements at the end
display the average time for each derivative method.

The vectorized version of the finite difference methods replaces explicit loops with
NumPy slicing operations, allowing batch processing of entire array segments. This
approach minimizes interpreter overhead, improves cache performance, and enables
the use of underlying low-level optimized code (often in C/Fortran). To write the
vectorized version for the same, one has to keep in mind from where to where the
loop ranges. The Table 2 will help in finding the vectorization equivalent of the loop.

IJMAR.net, Vol. 1, No. 1 Page 7 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Table 2 - Calculation of vectorization formula

Numerical
Formulation

Range of
loop

Calculation for slicing Vectorized formula

𝑓𝑖+1 − 𝑓𝑖

Δ𝑥

(0, 𝑛 − 1) 𝒊 + 𝟏 𝒊 𝑓[1:] − 𝑓[: −1]

Δ𝑥

Start End Start End

0 + 1 → 1 𝑛 − 1 + 1 → 𝑛 0 → 0 𝑛 − 1 → −1
𝑓𝑖 − 𝑓𝑖−1

Δ𝑥

(1, 𝑛) 𝒊 𝒊 − 𝟏 𝑓[1:] − 𝑓[: −1]

Δ𝑥

Start End Start End

1 → 1 𝑛 → 𝑛 1 − 1 → 0 𝑛 − 1 → −1
𝑓𝑖+1 − 𝑓𝑖−1

2Δ𝑥

(1, 𝑛 − 1) 𝒊 + 𝟏 𝒊 − 𝟏 𝑓[2:] − 𝑓[: −2]

2Δ𝑥

Start End Start End

1 + 1 → 2 𝑛 − 1 + 1 → 𝑛 1 − 1 → 0 𝑛 − 1 − 1 → −2
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

Δ𝑥

(1, 𝑛 − 1) 𝒊 + 𝟏 𝒊 − 𝟏 𝑓[2:] − 2𝑓[1: −1] + 𝑓[: −2]

2Δ𝑥
 Start End Start End

1 + 1 → 2 𝑛 − 1 + 1 → 𝑛 1 − 1 → 0 𝑛 − 1 − 1 → −2
𝒊

Start End

1 → 1 𝑛 − 1 → −1

The following vectorized functions were defined using slicing:

Defining functions to be timed
def time_dfdx_fd_vec():
 return (fn(x[1:]) - fn(x[:-1])) / Δx

def time_dfdx_bd_vec():
 return (fn(x[1:]) - fn(x[:-1])) / Δx

def time_dfdx_cd_vec():
 return (fn(x[2:]) - fn(x[:-2])) / (2 * Δx)

def time_d2fdx2_cd_vec():
 return (fn(x[2:]) - 2 * fn(x[1:-1]) + fn(x[:-2])) / Δx**2

Note that the slicing indices correspond to:

• x[1:] and x[:-1] for forward/backward differences, and

• x[2:] and x[:-2] for second derivatives and central difference schemes.
Each function returns an array with values computed across the grid in one operation,
utilizing broadcasting and contiguous memory access. As with the loop-based
methods, performance timing is measured using the timeit module:

Time the functions using timeit (with multiple runs)
num_runs = 100# Number of runs to take average from.
dfdx_fd_vec_time = timeit(time_dfdx_fd_vec, number=num_runs) / num_runs *
1000# ms
dfdx_bd_vec_time = timeit(time_dfdx_bd_vec, number=num_runs) / num_runs *
1000# ms

IJMAR.net, Vol. 1, No. 1 Page 8 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

dfdx_cd_vec_time = timeit(time_dfdx_cd_vec, number=num_runs) / num_runs *
1000# ms
d2fdx2_cd_vec_time = timeit(time_d2fdx2_cd_vec, number=num_runs) /
num_runs * 1000# ms

print(f"dfdx_fd_vec_time: {dfdx_fd_vec_time:.4f} ms")
print(f"dfdx_bd_vec_time: {dfdx_bd_vec_time:.4f} ms")
print(f"dfdx_cd_vec_time: {dfdx_cd_vec_time:.4f} ms")
print(f"d2fdx2_cd_vec_time: {d2fdx2_cd_vec_time:.4f} ms")

One can observe that timeit() function from the module timeit has been used to
evaluate the computation time. This module provides a way to measure the execution
time of small code snippets precisely. It is particularly useful for micro-
benchmarking, where the performance comparison of different function or algorithm
implementations has been done. The timeit() function is the core of the module. It
takes a callable (usually a function) as input, executes it again and again up to a
specified number of times, and returns the total time taken. The function handles the
reiterations, warm-up runs, and other factors to decrease the measurement noise,
thereby making it a robust tool for performance analysis.

4. Computational Cost and Timing

Table 3 presents the timing results obtained by running the code with a grid size of

10000. The timings are in milliseconds (ms) and represent the average of multiple

runs to reduce the effect of minor variations.

Table 3 - Execution time comparison for different schemes

Type Grid Size Loop-
based time
(ms)

Vectorized
time (ms)

Speedup
factor

1st derivative
(Forward)

10000 0.2452

28.3228

115.509

1st derivative
(Backward)

10000 0.1641

28.8787 175.98

1st derivative (Central) 10000 0.1647

30.3554 184.31

2nd derivative
(Central)

10000 0.2432

46.5622 191.46

The results have demonstrated a significant performance gain of vectorized
operations over the loop-based implementations for FDM. The speedup factors
obtained range to several hundred, which highlights the impressive impact of
vectorization. This improvement comes from several factors. Firstly, NumPy's
vectorized operations are implemented in highly optimized C code, which executes
much faster than interpreted Python loops. Secondly, vectorization removes the
overhead of the Python interpreter for each element in the array. In the loop-based

IJMAR.net, Vol. 1, No. 1 Page 9 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

approach, the interpreter has to take care of the loop counter, array indexing, and
function calls for each element. With vectorization, these operations are performed at
the C level, thus significantly reducing overhead. The graph shown below (Figure 2)
further illustrates the performance difference. They show the computation time as a
function of grid size (N) for both vectorized and loop-based implementations of the
finite difference methods for 1st and 2nd derivatives based on central difference.

Figure 2 - Variation of computation time with grid size

As can be seen from the graphs, the computation time for the loop-based methods
increases linearly with the grid size. In contrast, the computation time for the
vectorized methods remains almost constant, even as the grid size increases
significantly. This proves the excellent scaling performance of vectorized operations
and their fitness for large-scale numerical simulations.

6. Result and Discussion
To ensure that the observed differences in execution time between loop-based and
vectorized implementations are statistically meaningful, each method was executed
100 times using Python's timeit module. This high number of iterations minimizes
noise from background processes and ensures repeatability. The consistency across
multiple runs showed low variation in runtime, especially for the vectorized
implementations. This reinforces the reliability of the observed speedups, which
reached up to ~190× for certain schemes.

This study aimed to evaluate whether vectorization significantly improves the
performance of finite difference methods. The results strongly support the hypothesis:
vectorized NumPy-based implementations drastically reduce computation time
without altering the mathematical formulation or accuracy.

IJMAR.net, Vol. 1, No. 1 Page 10 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

The improvement is particularly pronounced in operations such as central differences
and second derivatives, which benefit from simultaneous data access and reduced
interpreter overhead. These findings confirm that vectorization is not merely a coding
preference, but a computational strategy that enables scalable numerical analysis.
The observed performance gains have major implications:

• Accelerated simulations: For time-sensitive tasks such as real-time modelling,
rapid prototyping, or iterative solvers, vectorization can cut computation time
significantly.

• Enhanced accessibility: Python's NumPy enables high-speed computation
without low-level languages such as C/C++, making high-performance
methods more accessible to students and researchers.

• Benchmark for future tools: These findings provide baseline performance
metrics for comparing alternative optimization strategies (e.g., Numba,
parallelization, GPU computing).

This research thus contributes to the growing body of literature advocating vectorized
numerical practices, especially in Python-based environments.
While the results are promising, there are some limitations:

• The study is restricted to 1D finite difference formulations. Extension to 2D or
3D problems may involve more complex boundary handling.

• Only trigonometric functions were tested. More generalized or nonlinear
problems should be included in future validation.

• The analysis focused purely on execution time. Future work could incorporate
accuracy benchmarking, memory consumption, and parallelized vectorization
using packages such as Dask or Numba.

7. Conclusion
This study demonstrates the sizable performance benefits of vectorization in
numerical computations. By replacing loop-based implementations with NumPy’s
vectorized operations, execution times for numerical differentiation are reduced by
nearly an order of magnitude. These advancements make the vectorization a crucial
optimization strategy for the large-scale numerical simulations. The findings have
emphasized the need for widespread adoption of vectorized implementations in
scientific computing, specifically in applications requiring frequent finite difference
calculations or large numerical computations (for example, computational fluid and
heat transfer). Future research could investigate vectorization in higher-dimensional
problems and its integration with parallel computing techniques for more
acceleration. Vectorization in non-uniform grids, multi-step solvers, and domain-
specific applications such as CFD or heat transfer modelling could also be explored.

5. References
Anderssen, R., & Hegland, M. (1999). For numerical differentiation, dimensionality can be a

blessing! Mathematics of Computation, 68(227), 1121–1141.
https://doi.org/10.1090/s0025-5718-99-01033-9

Bauckhage, C. (2020). NumPy / SciPy recipes for data science: Subset-Constrained vector

quantization via mean discrepancy minimization. ResearchGate.
https://www.researchgate.net/publication/341788722_NumPy_SciPy_Recipes_for_

IJMAR.net, Vol. 1, No. 1 Page 11 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Data_Science_Subset-
Constrained_Vector_Quantization_via_Mean_Discrepancy_Minimization

Carter, N. P., Agrawal, A., Borkar, S., Cledat, R., David, H., Dunning, D., Fryman, J., Ganev,
I., Golliver, R. A., Knauerhase, R., Lethin, R., Meister, B., Mishra, A. K., Pinfold, W.
R., Teller, J., Torrellas, J., Vasilache, N., Venkatesh, G., & Xu, J. (2013). Runnemede:
An architecture for ubiquitous high-performance computing. Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer Architecture (HPCA),
198–209. https://doi.org/10.1109/HPCA.2013.6522319

Dumka, P., Dumka, R., & Mishra, D. R. (2022). Numerical methods using Python. BlueRose.
https://blueroseone.com/store/product/numerical-methods-using-python-for-
scientists-and-engineers

Epperson, J. F. (2021). An introduction to numerical methods and analysis. John Wiley & Sons.
https://doi.org/10.1002/9781119604754

Johansson, R. (2018). Numerical python: Scientific computing and data science applications with
numpy, SciPy and matplotlib (2nd ed.). Apress. https://doi.org/10.1007/978-1-4842-
4246-9

Khan, I. R., & Ohba, R. (2000). New finite difference formulas for numerical differentiation.
Journal of Computational and Applied Mathematics, 126(1–2), 269–276.
https://doi.org/10.1016/S0377-0427(99)00358-1

Milutinović, V., Furht, B., Obradović, Z., & Korolija, N. (2016). Advances in high
performance computing and related issues. Mathematical Problems in Engineering.
https://doi.org/10.1155/2016/2632306

Özişik, M. N., Orlande, H. R. B., Colaço, M. J., & Cotta, R. M. (2017). Finite difference methods
in heat transfer (2nd ed.) CRC Press. https://doi.org/10.1201/9781315121475

Pawar, P. S., Mishra, D. R., & Dumka, P. (2022). Solving first order ordinary differential
equations using least square method : A comparative study. International Journal of
Innovative Science and Research Technology, 7(3), 857–864.

Ryder, B. G., Soffa, M. L., & Burnett, M. M. (2005). The impact of software engineering
research on modern progamming languages. ACM Transactions on Software
Engineering and Methodology, 14(4), 431–477.
https://doi.org/10.1145/1101815.1101818

Srichandra, S. R., Rahul, P. S., & Battula, V. (2023). Vectorization of Python programs using
recursive LSTM autoencoders. In S. Roy, D. Sinwar, N. Dey, T. Perumal, & J. M. R. S.
Tavares (Eds.), Innovations in Computational Intelligence and Computer Vision (pp. 253–
266). Springer Nature Singapore.

Shi, H.-J. M., Xuan, M. Q., Oztoprak, F., & Nocedal, J. (2023). On the numerical performance
of finite-difference-based methods for derivative-free optimization. Optimization
Methods and Software, 38(2), 289–311. https://doi.org/10.1080/10556788.2022.2121832

T., V., & Strikwerda, J. C. (1990). Finite difference schemes and partial differential equations.
In Mathematics of Computation, 55(192). SIAM. https://doi.org/10.2307/2008454

Taylor, L. R., Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1987).
Numerical recipes: The art of scientific computing. The Journal of Animal Ecology (3rd
ed.), 56(1). Cambridge University Press. https://doi.org/10.2307/4830

Usmani, R. A., & Taylor, P. J. (1983). Finite difference methods for solving. International
Journal of Computer Mathematics, 14(3–4), 277–293.
https://doi.org/10.1080/00207168308803391

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for
efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30.
https://doi.org/10.1109/MCSE.2011.37

Watkinson, N., Tai, P., Nicolau, A., & Veidenbaum, A. (2020). NumbaSummarizer: A python
library for simplified vectorization reports. Proceedings - 2020 IEEE 34th International

IJMAR.net, Vol. 1, No. 1 Page 12 of 12

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Parallel and Distributed Processing Symposium Workshops, pp. 269–275.
https://doi.org/10.1109/IPDPSW50202.2020.00058

Yashar, M., & Rashid, T. A. (2020). VAPI: Vectorization of algorithm for performance
improvement. https://doi.org/10.48550/arXiv.2308.01269

This paper may be cited as:

Dumka, P., Chauhan, R., & Tapendra, V. (2025). Vectorization and Finite Difference Methods:

A Powerful Partnership for Numerical Solutions. International Journal on
Multidisciplinary and Applied Research, 1(3), 1-12. https://doi.org/10.63236/ijmar.1.1.3

