
IJMAR.net, Vol. 1, No. 1 Page 1 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

International Journal on Multidisciplinary and Applied Research
https://doi.org/10.63236/ijmar.1.1.2
Date received: 22/02/25; revised: 11/04/25; accepted: 25/05/25; published:
01/06/25

Teaching Differential Equations to Mechanical
Engineering Students using Excel VBA

Pankaj Dumka
Department of Mechanical Engineering, Jaypee University of Engineering and
Technology, A.B. Road, Raghogarh-473226, Madhya Pradesh, India
https://orcid.org/0000-0001-5799-6468

Dhananjay R. Mishra
Department of Mechanical Engineering, Jaypee University of Engineering and
Technology, A.B. Road, Raghogarh-473226, Madhya Pradesh, India
https://orcid.org/0000-0002-5107-0012

Rishika Chauhan
Department of Electronics and Communication Engineering, Jaypee University of
Engineering and Technology, A.B. Road, Raghogarh-473226, Madhya Pradesh, India
https://orcid.org/0000-0001-8483-865X

Corresponding author: Pankaj Dumka, p.dumka.ipec@gmail.com

Abstract
The ability to solve differential equations is necessary for mechanical engineering
students, as these equations model real-world engineering systems such as fluid flow,
heat conduction, thermodynamics, and structural integrity. This aim of this study is
to develop a complete teaching module by utilizing the Excel VBA to facilitate the
numerical solution of differential equations in mechanical engineering. Unlike
MATLAB or Python, Excel VBA provides an open platform for students with minimal
coding experience, thus enabling them to understand numerical methods while
working within a spreadsheet. The research follows the Design, Development,
Implementation, and Evaluation (DDIE) framework to create an interactive and
practical learning experience for the students. The study evaluates student
engagement, understanding, and problem-solving ability by using both the
qualitative and quantitative assessments. The module was tested in an undergraduate
engineering classroom and demonstrated strong quantitative impact, receiving high
validation scores from both the students and faculty members with a 35% average
score improvement, 85% student preference for Excel VBA, and faculty reporting 30%
increased confidence, 25% better problem-solving, 20% more experimentation, and
25% improved conceptual understanding. The results demonstrate that the Excel VBA

IJMAR.net, Vol. 1, No. 1 Page 2 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

is an effective tool for teaching numerical methods by providing the students with an
intuitive and interactive approach to solve differential equations.

Keywords: teaching module, differential equations, Excel VBA, engineering
education, numerical methods

1. Introduction
In today’s engineering education landscape, the integration of computational tools
and numerical problem-solving techniques has become necessary. As curricula
increasingly stress the practical problem-solving over rote analytical derivations,
educators are challenged to adopt accessible and effective instructional tools that
bridge theoretical understanding with real-world application. Differential equations
serve as the basis for modelling numerous engineering phenomena which include
fluid mechanics, thermodynamics, structural mechanics, and vibration analysis
(Anderssen & Hegland, 1999; Chapra & Canale, 2010; Loyinmi & Akinfe, 2020;
Muldowney, 1990). Conventionally, engineering students are introduced to solving
these equations using analytical methods (Fusco et al., 2022; Kunkel & Mehrmann,
2006; Loyinmi & Akinfe, 2020; T. & Strikwerda, 1990). However, many practical
problems involve nonlinearities or boundary conditions that make analytical
solutions unavailable (Dumka et al., 2022). Numerical methods offer an alternate
approach by enabling the students to approximate solutions effectively (Faires &
Burden, 2003; Kreyszig, 2011).

While programming tools such as MATLAB (Kumar, 2016; Nikolic et al., 2018), Python
(Ranjani et al., 2019; Van Der Walt et al., 2011), and Mathematica (Wijaya et al., 2021)
are extensively used in academic circles, many students face a steep learning curve
when adapting to these platforms. Studies such as those by Johns et al. (2023) and
Inguva et al. (2021) show that the integration of MATLAB and Python enhances
student understanding of numerical methods, especially for solving ordinary and
partial differential equations. However, despite their advantages, these platforms
assume a certain level of programming proficiency, which can be a hindrance for
early-stage undergraduates or students from non-programming backgrounds. While
these tools are powerful, they are often underutilized in undergraduate curricula
owing to perceived complexity or lack of programming background among students.
This creates a teaching gap—students are either overwhelmed by programming
environments or are restricted to passive learning through static problem sets.

Excel VBA offers a spontaneous and familiar environment (Fellah, 2019; Musimbi &
Mulanza, 2018), allowing the students to implement numerical methods without any
need for widespread coding experience (Baliti et al., 2020; Coronell, 2005; El-Awad,
2015). Naseem et al. (2023) demonstrated that Excel VBA can be used effectively to
implement numerical integration, root-finding algorithms, and solutions to initial and
boundary value problems. The strength of VBA lies in bridging the gap between
conceptual understanding and computational execution, particularly for students
with minimal coding experience.

IJMAR.net, Vol. 1, No. 1 Page 3 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Interactive learning environments have been shown to enhance student engagement
and retention of knowledge significantly. The DDIE (Design, Development,
Implementation, and Evaluation) framework, as applied by Hidayat and Nizar (2021)
in instructional design, offers a systematic approach to curriculum development. This
framework aligns well with the iterative nature of engineering problem solving and
has been used successfully in integrating computational tools into engineering
courses.

Despite the pedagogical potential of Excel VBA, limited literature exists that
formalizes its use in teaching differential equations in mechanical engineering
curricula. Existing research primarily explores either high-end computational
platforms or static spreadsheet methods, without leveraging the interactivity and
customization potential of VBA. This gap underscores the novelty of the current
study, which introduces a structured teaching module based on Excel VBA, supported
by a robust instructional framework and real classroom implementation.

This study introduces an Excel VBA-based module designed to teach the mechanical
engineering students how to solve ordinary differential equations (ODEs) using
computational techniques. The study is guided by the following research questions:

• Can an Excel VBA-based module effectively support the teaching of ordinary
differential equations to undergraduate mechanical engineering students?

• How does the DDIE instructional framework enhance learner engagement and
conceptual understanding in a computationally driven environment?

This study presents the design, development, implementation, and evaluation of an
interactive instructional module built using Excel VBA, aimed at helping mechanical
engineering students solve ordinary differential equations using numerical
techniques. The module is embedded within the DDIE pedagogical framework,
offering an engaging and structured approach that aligns with students’ learning
curves and course objectives. The study not only validates the instructional design
through classroom deployment but also identifies the strengths, limitations, and
transferability of the approach for broader educational use.

2. Method
This research adopts the DDIE (Design, Development, Implementation, and
Evaluation) model, a well-established instructional design framework, to
systematically construct a robust and pedagogically sound learning module tailored
for mechanical engineering students. The DDIE approach, as articulated in the works
of Karajizadeh et al. (2023) and Seeto and Vlachopoulos (2015), provides a structured
pathway to translate educational goals into effective classroom practices. Its
application in STEM education has been shown to improve both the clarity of content
delivery and the retention of complex concepts. In this study, the framework is further
reinforced by insights from Ogegbo and Ramnarain (2022), emphasizing the need for
student-centred learning tools that align with real-world applications.

The Design phase commenced with a thorough analysis of the learning objectives (Li
& Sun, 2023), which were directly aligned with core topics in mechanical engineering

IJMAR.net, Vol. 1, No. 1 Page 4 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

where differential equations play a central role—such as transient heat conduction,
fluid flow dynamics, and mechanical vibrations. Key numerical methods, including
Euler’s method, Runge-Kutta methods, and finite difference techniques, were selected
for inclusion based on their relevance to the curriculum and feasibility for
implementation in Excel VBA. Additionally, instructional materials were structured
to build gradually from foundational concepts to more complex applications, enabling
a scaffolded learning experience.

In the Development phase, the focus shifted to implementing these numerical
algorithms using Excel’s Visual Basic for Applications (VBA) environment (Rossi,
2021). Custom subroutines and user-defined functions were coded to simulate the
numerical solution of ordinary differential equations (ODEs) and initial/boundary
value problems. Effort was made to keep the VBA code readable and modifiable so
that students with minimal programming background could engage with the logic,
trace computations, and experiment with parameters. Graphical outputs and
worksheet interactivity were incorporated to support visualization of results, thereby
enhancing conceptual understanding.

The Implementation stage involved classroom execution of the developed module.
Undergraduate mechanical engineering students were introduced to the Excel VBA
tools through guided tutorials, live demonstrations, and problem-solving sessions.
Students applied the tools to solve representative engineering problems, thereby
reinforcing the connection between theory and practice. This experiential learning
component enabled students to appreciate not only the computational approach but
also the physical significance of differential equations in engineering analysis and
design.

Finally, in the Evaluation phase, a mixed-methods approach was employed to assess
the effectiveness of the learning module. Quantitative evaluation was conducted
using pre-tests and post-tests to measure the knowledge gain and problem-solving
ability of students. Qualitative data were collected through structured surveys and
semi-structured interviews with faculty members and students, providing insights
into user experience, engagement, and perceived value of the Excel VBA module.
Feedback gathered from these assessments was analysed and used to refine the
teaching material, improve user interface elements, and address common points of
confusion. This continuous feedback loop ensured that the learning tool evolved into
a more effective and student-friendly educational resource.

Overall, the integration of the DDIE model in this research facilitated the creation of a
comprehensive, interactive, and accessible learning module that not only enhances
student engagement but also bridges the gap between abstract numerical methods
and their practical applications in mechanical engineering.

3. Implementation of Numerical Methods in Excel VBA
The module includes several numerical techniques to solve differential equations,
each illustrated with real-world engineering applications. Detailed explanations,
example problems, and VBA implementations help students grasp key concepts.

IJMAR.net, Vol. 1, No. 1 Page 5 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Euler Method (Devia et al., 2021; Ijaz Khan et al., 2023)
Euler’s method is the easiest numerical approach for solving first-order ODEs of the

form
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦). Given an initial value 𝑦0 at 𝑥0, the next value is approximated using

a small step size ℎ as follows (Burden & Faires, 2010; Chapra & Canale, 2010; Kreyszig,
2011):

𝑦𝑛+1 = 𝑦𝑛 + ℎ × 𝑓(𝑥𝑛, 𝑦𝑛) (1)
This method is explicit and straightforward but suffers from numerical uncertainty
and low accuracy for difficult or quickly changing functions. The global error is
proportional to 𝑂(ℎ), making it less appropriate for problems which require high
precision. The following VBA script demonstrates how students can implement
Euler’s method in Excel VBA:

Sub euler()
a = InputBox("Enter a")
b = InputBox("Enter b")
h = InputBox("Enter h")
n = Int(1 + (b - a) / h)
ReDim x(n)
For i = 0 To n
 x(i) = a + i * h
Next i
ReDim y(n)
y(0) = InputBox("Enter y(0)")
For i = 0 To n - 1
 y(i + 1) = y(i) + dydx(x(i), y(i)) * h
 Cells(i + 2, 1) = i + 1
 Cells(i + 2, 2) = x(i)
 Cells(i + 2, 3) = ytrue(x(i))
 Cells(i + 2, 4) = y(i)
Next i
End Sub

Its subroutine requires the inputs for the range, step size, and initial condition. Then
it computes and stores 𝑥 and 𝑦 values using the Euler formula. The results, including
step number, 𝑥, exact solution (ytrue), and Euler approximation, are displayed in the
worksheet.

Runge-Kutta Method (Koroche, 2021; Mechee & Aidi, 2022)
Runge-Kutta methods improve accuracy over Euler’s method by considering
intermediate points within each step to increase the accuracy. The most common form
is the fourth-order Runge-Kutta method (RK4), which provides a good balance
between accuracy and computational efficiency. The RK4 method computes the next
value as (Burden & Faires, 2010; Chapra & Canale, 2010; Rabiei et al., 2023):

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (2)

where,

IJMAR.net, Vol. 1, No. 1 Page 6 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛); 𝑘2 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1); 𝑘3 = 𝑓 (𝑥𝑛 +

ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2) ; 𝑘4 = 𝑓(𝑥𝑛 +

ℎ, 𝑦𝑛 + ℎ𝑘3)

The RK4 method provides an error of order 𝑂(ℎ4) which makes it more accurate than
the Euler method while remaining computationally practical for a wide range of
problems. The following VBA function implements the fourth-order Runge-Kutta
(RK4) method:

Sub RK4()
 a = InputBox("Enter x(0)")
 b = InputBox("Enter x(n)")
 h = InputBox("Enter h")
 n = Int(1 + (b - a) / h)
 ReDim x(n)
 For i = 0 To n
 x(i) = a + i * h
 Next i
 ReDim y(n)
 y(0) = InputBox("Enter y(0)")
 col = InputBox("Enter colum to print the result")
 For i = 0 To n - 1
 k1 = dydx(x(i), y(i))
 k2 = dydx(x(i) + h / 2, y(i) + k1 * h / 2)
 k3 = dydx(x(i) + h / 2, y(i) + k2 * h / 2)
 k4 = dydx(x(i) + h, y(i) + k3 * h)
 Slope = (k1 + 2 * k2 + 2 * k3 + k4) / 6
 y(i + 1) = y(i) + Slope * h
 Cells(i + 2, 1) = i + 1
 Cells(i + 2, 2) = x(i)
 Cells(i + 2, 3) = ytrue(x(i))
 Cells(i + 2, Int(col)) = y(i)
 Next i
End Sub

Its subroutine requires the inputs for the range, step size, initial condition, and output
column, then calculates the 𝑥 and 𝑦 values using RK4's weighted slope formula. The
results, namely step number, 𝑥, exact solution, and RK4 approximation, are printed
in the specified worksheet columns. The functions were demonstrated to solve the
following equation:

𝑑𝑦

𝑑𝑥
 = −2𝑦 + 3𝑥 ; 𝑦(0) = 5 (3)

The students were asked to formulate the function in VBA which appear as follows:

Function dydx(x, y)
 dydx = -2 * y + 3 * x
End Function

IJMAR.net, Vol. 1, No. 1 Page 7 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Then one by one they run the subroutines which ask about the domain, step size and
initial value of 𝑦. Figures 1 and 2 show the solution of the problem and error variation
for a step size (h) of 0.2.

Figure 1 - Comparison of Euler and Runge-Kutta methods with the exact solution

Figure 2 - Error comparison between Euler and Runge-Kutta methods

This graph displays the numerical solutions obtained using Euler’s method and the
Runge-Kutta (RK4) method, compared to the exact analytical solution. The exact
solution (black curve) represents the true behaviour of the differential equation. The
Euler method (red circles) shows significant deviations as 𝑥 increases, while the
Runge-Kutta method (blue squares) closely sees the exact solution, demonstrating its
superior accuracy.

The error plot depicts the difference of each numerical method from the exact solution.
The Euler method (red line) exhibits a growing error, especially at larger values of 𝑥,
due to its lower order of accuracy. The Runge-Kutta method (blue line) has
significantly smaller errors, showing only minimal deviation throughout the range.
This demonstrates why RK4 is preferred for solving differential equations
numerically.

IJMAR.net, Vol. 1, No. 1 Page 8 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Reasons for Deviations

• Euler’s Method: Accumulation of Truncation Errors
Euler’s method uses a simple one-step forward approximation which leads to
cumulative errors at each iteration. As the Euler’s method only considers slope
at the beginning of each interval, it fails to adjust for curvature in the actual
solution which results in a rising deviation.

• Runge-Kutta Method: Higher Order Accuracy
RK4 takes multiple intermediate calculations within each step, thus adjusting
for the local curvature of the function. This approach minimizes errors by
refining the estimate of the next point. This ensures much closer alignment with
the exact solution.

• Effect of Step Size
A smaller step size (ℎ) would reduce errors in both methods; however, Euler’s
method would still be significantly less accurate than RK4. The Runge-Kutta
method, even with a moderate step size, produces results that are nearly
indistinguishable from the exact solution, making it more efficient.

These results confirm that while Euler’s method provides a simple numerical
approach, it is not suitable for high-accuracy applications owing to its large truncation
errors. The Runge-Kutta method, on the other hand, offers significantly better
precision with minimal additional computational effort, making it the preferred
choice for solving differential equations in engineering applications.

4. Results and Discussion
 Student performance was evaluated using pre-test and post-test scores. The average
improvement in scores was 35%, showing a substantial improvement in problem-
solving skills. Surveys showed that 85% of students found Excel VBA more useful
than traditional programming languages. Faculty feedback emphasized that the
module improved students' conceptual understanding of numerical methods. The
study also found that the students have appreciated the interactive nature of the
module and its incorporation into spreadsheet-based problem-solving.

Performance Metrics
The performance metrics presented in the Table 1 presents an in-depth look into how
students understanding and interaction with differential equations improved after
utilizing the Excel VBA module.

Table 1 - Performance metrics based on classroom performance

Metric Pre-Test Score (%) Post-Test Score (%) Improvement (%)

Accuracy 59 94 35

Usability 65 90 25

Engagement 63 88 25

A paired t-test was conducted between the pre-test and post-test scores to ensure the
statistical significance of the improvements. The results showed a p-value < 0.01,

IJMAR.net, Vol. 1, No. 1 Page 9 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

confirming that the gains were not due to random chance, but rather the impact of the
Excel VBA module. The following observations are made:

Accuracy: The most substantial improvement was observed in the accuracy, which
has increased by 35%. This suggests that students developed a stronger knowledge of
numerical methods and were able to apply them effectively to solve differential
equations. The structured step-by-step approach in VBA has helped in the reduction
of errors and strengthening the understanding of ODEs.

Usability: Usability increased by 25%. Students found Excel VBA to be an accessible
tool that enabled them to visualize the problem-solving process better. Unlike
traditional methods, Excel VBA provided an interactive environment where students
could manipulate values and observe the results immediately.

Engagement: The engagement of the students also increased by 25%, indicating that
the students were more involved in learning activities. The hands-on experience of
coding their own numerical solvers encouraged the active participation of students
and boosted their problem-solving confidence.

Overall, the performance metrics highlight the success of integrating Excel VBA into
the curriculum for teaching numerical solutions to differential equations. These
improvements align with positive student feedback and faculty observations,
reinforcing the module’s educational value.

Student Feedback
A survey was conducted among students, the results of which are illustrated in
Figure. 3. The students expressed positive feedback on the usability and effectiveness
of the module.

Figure 3 - Student satisfaction survey results

From the survey it has been observed that 92% of students have agreed that the Excel
VBA helped them visualize numerical methods effectively. Furthermore, 88% have

IJMAR.net, Vol. 1, No. 1 Page 10 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

stated that they preferred the module over traditional classroom lectures owing to its
interactive style. The module was applied across a variety of engineering problems,
ranging from Newton's law of cooling to second-order dynamic systems such as mass-
spring-damper models. This diversity enabled students to understand the wide
applicability of numerical methods, reinforcing their problem-solving versatility.

While the module was largely successful, some students initially faced difficulties in
understanding VBA syntax and logic structures. Additionally, challenges related to
Excel version compatibility and macro settings were reported, especially when
working across different systems. These issues were mitigated through peer
discussions and instructor-led support sessions.

Faculty Observations
Instructors found that students demonstrated improved confidence in applying
numerical techniques. The ability to modify VBA scripts enabled the students to
experiment with various problem-solving approaches, thereby reinforcing their
learning.

Figure 4 - Faculty observations on Excel VBA module

Faculty observations further highlighted the various ways in which students benefited
from the Excel VBA module. As illustrated in Figure 4, approximately 30% of faculty
members have noted a significant improvement in the students’ confidence when
tackling numerical problems. Additionally, 25% of instructors observed better
problem-solving skills, as students were able to break down complex differential
equations systematically. Another 20% of faculty members emphasized increased
experimentation, with students modifying VBA scripts to test various numerical
techniques. Finally, 25% of instructors reported enhanced conceptual understanding,
as the module provided a structured and interactive approach to learning differential
equations. These qualitative insights support the effectiveness of integrating Excel
VBA into mechanical engineering education, making numerical methods more
accessible and engaging.

IJMAR.net, Vol. 1, No. 1 Page 11 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

The success of this Excel VBA-based approach underscores its potential to enhance
learning in other computational subjects such as heat transfer, control systems, and
even optimization. Future iterations of the module could integrate real-time error
tracking, student assessment analytics, and simulation of partial differential
equations. Additionally, its adaptability to online or hybrid classrooms makes it a
sustainable pedagogical tool for modern engineering education.

5. Conclusion
This research article confirms that Excel VBA is a feasible tool for teaching the
differential equations in mechanical engineering. Subroutines have been written in
VBA to solve differential equations using Euler’s and Runge-Kutta (fourth order)
method. By providing an organized learning approach through the DDIE model,
students gained hands-on experience in computational problem-solving. With a 35%
average score improvement and 85% of students choosing Excel VBA over traditional
languages, the module significantly enhanced problem-solving skills and usability.
Faculty feedback highlighted a diverse student gain, namely 30% noted increased
confidence, 25% observed improved problem-solving, 20% reported more
experimentation, and 25% highlighted deeper conceptual understanding. These
insights affirm that Excel VBA fosters an engaging, hands-on learning experience for
mastering differential equations in mechanical engineering. Future research could
focus on integrating more complex PDE solvers and expanding the module to include
real-time data processing for engineering simulations. This will further enhance the
students’ understanding and applications of numerical methods to the real-world
problems.

6. References
Anderssen, R., & Hegland, M. (1999). For numerical differentiation, dimensionality can be a

blessing! Mathematics of Computation, 68(227), 1121–1141.
https://doi.org/10.1090/s0025-5718-99-01033-9

Burden, R. L., & Faires, J. D. (2010). Numerical analysis. Brooks Cole.
Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers (5th ed.). The McGraw-

Hill Companies.
Coronell, D. G. (2005). Computer science or spreadsheet engineering? An Excel/VBA-based

programming and problem solving course. Chemical Engineering Education, 39(2),
142–145.

Devia, D. M., Mesa, F., & Vélez, G. (2021). Comparative analysis of numerical solutions of
ODEs with initial value problems using improved euler methods. Scientia et Technica,
26(03), 391–397. https://doi.org/10.22517/23447214.24892

Dumka, P., Dumka, R., & Mishra, D. R. (2022). Numerical methods using Python. BlueRose.
El-Awad, M. M. (2015). A multi-substance add-in for the analyses of thermo-fluid systems

using Microsoft Excel. International Journal of Engineering and Applied Sciences, 2(3).
Faires, J. D., & Burden, R. L. (2003). Numerical methods. Thomson.
Fellah, G. (2019). Excel Spreadsheet as a tool for simulating the performance of steam power

plants. Spreadsheets in Education, 12(January), 1–19.
https://sie.scholasticahq.com/article/7007-excel-spreadsheet-as-a-tool-for-
simulating-the-performance-of-steam-power-plants

Fusco, N., Marcellini, P., & Sbordone, C. (2022). Ordinary differential equations. UNITEXT -
La Matematica per Il 3 Piu 2, 137(NeurIPS), 187–235. https://doi.org/10.1007/978-3-
031-04151-8_4

IJMAR.net, Vol. 1, No. 1 Page 12 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

Hidayat, F., & Nizar, M. (2021). Model ADDIE (Analysis, Design, Development,
Implementation and Evaluation) Dalam Pembelajaran Pendidikan Agama Islam.
Jurnal Inovasi Pendidikan Agama Islam (JIPAI), 1(1), 28–38.
https://doi.org/10.15575/jipai.v1i1.11042

Ijaz Khan, M., Al-Khaled, K., Raza, A., Khan, S. U., Omar, J., & Galal, A. M. (2023).
Mathematical and numerical model for the malaria transmission: Euler method
scheme for a malarial model. International Journal of Modern Physics B, 37(16), 2350158.
https://doi.org/10.1142/S0217979223501588

Inguva, P., Bhute, V. J., Cheng, T. N. H., & Walker, P. J. (2021). Introducing students to
research codes: A short course on solving partial differential equations in Python.
Education for Chemical Engineers, 36, 1–11. https://doi.org/10.1016/j.ece.2021.01.011

Johns, A. N., Hesketh, R. P., Stuber, M. D., & Ford Versypt, A. N. (2023). Numerical problem
solving across the curriculum with Python and MATLAB using interactive coding
templates: A workshop for chemical engineering faculty. Proceedings of the ASEE
Annual Conference and Exposition, Conference,, January 2021.
https://doi.org/10.18260/1-2--43749

Karajizadeh, M., Zand, F., Vazin, A., Saeidnia, H. R., Lund, B. D., Tummuru, S. P., &
Sharifian, R. (2023). Design, development, implementation, and evaluation of a
severe drug–drug interaction alert system in the ICU: An analysis of acceptance and
override rates. International Journal of Medical Informatics, 177(June), 105135.
https://doi.org/10.1016/j.ijmedinf.2023.105135

Koroche, K. A. (2021). Numerical solution of first order ordinary differential equation by
using Runge-Kutta method. International Journal of Systems Science and Applied
Mathematics, 6(1), 1. https://doi.org/10.11648/j.ijssam.20210601.11

Kreyszig, E. (2011). Advanced engineering mathematics (10th ed.). Wiley.
Kumar, R. (2016). Thermodynamic modeling and validation of a 210-MW capacity coal-fired

power plant. Iranian Journal of Science and Technology - Transactions of Mechanical
Engineering, 40(3), 233–242. https://doi.org/10.1007/s40997-016-0025-5

Kunkel, P., & Mehrmann, V. (2006). Differential-algebraic equations: Analysis and numerical
solution. European Mathematical Society. https://ems.press/books/etb/14

Li, R. Y., & Sun, J. C. Y. (2023). Identifying key factors of dynamic ADDIE model for
instructional virtual reality design: An exploratory study. Interactive Learning
Environments, June. https://doi.org/10.1080/10494820.2023.2296519

Loyinmi, A. C., & Akinfe, T. K. (2020). Exact solutions to the family of Fisher’s reaction‐
diffusion equation using Elzaki homotopy transformation perturbation method.
Engineering Reports, 2(2), 1–32. https://doi.org/10.1002/eng2.12084

Mechee, M. S., & Aidi, S. H. (2022). Generalized Euler and Runge-Kutta methods for solving
classes of fractional ordinary differential equations. International Journal of Nonlinear
Analysis and Applications, 13(May 2021), 1737–1745.

Muldowney, J. S. (1990). Compound matrices and ordinary differential equations. Rocky
Mountain Journal of Mathematics, 20(4), 857–872.

Musimbi, O., & Mulanza, J.P. (2018). Using Excel as a tool to teach manufacturing and heat
transfer. ASEE Zone IV Conference. https://doi.org/10.18260/1-2--29631

Naseem, A., Rehman, M. A., Qureshi, S., & Ide, N. A. D. (2023). Graphical and numerical
study of a newly developed root-finding algorithm and its engineering applications.
IEEE Access, 11(1), 2375–2383. https://doi.org/10.1109/ACCESS.2023.3234111

Nikolic, S., Ros, M., & Hastie, D. B. (2018). Teaching programming in common first year
engineering: discipline insights applying a flipped learning problem-solving
approach. Australasian Journal of Engineering Education, 23(1), 3–14.
https://doi.org/10.1080/22054952.2018.1507243

Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in

IJMAR.net, Vol. 1, No. 1 Page 13 of 13

Copyright: © 2025 by the authors. https://ijmar.net/index.php/ijmar

science classrooms. Studies in Science Education, 58(2), 203–230.
https://doi.org/10.1080/03057267.2021.1963580

Rabiei, F., Hamid, F. A., Rashidi, M. M., Ali, Z., Shah, K., Hosseini, K., & Khodadadi, T.
(2023). Numerical simulation of fuzzy volterra integro-differential equation using
improved Runge-Kutta method. Journal of Applied and Computational Mechanics, 9(1),
72–82. https://doi.org/10.22055/jacm.2021.38381.3212

Ranjani, J., Sheela, A., & Pandi Meena, K. (2019). Combination of NumPy, SciPy and
Matplotlib/Pylab - A good alternative methodology to MATLAB-A comparative
analysis. Proceedings of 1st International Conference on Innovations in Information and
Communication Technology, 1–5. https://doi.org/10.1109/ICIICT1.2019.8741475

Rossi, R. (2021). Data science education based on ADDIE model and the Edison Framework.
Proceedings - 2021 International Conference on Big Data Engineering and Education, 40–
45. https://doi.org/10.1109/BDEE52938.2021.00013

Seeto, D., & Vlachopoulos, P. (2015). Design develop implement (DDI)—A team-based
approach to learning design. THETA: The Higher Education Technology Agenda,11–13.
papers3://publication/uuid/5E923ADF-C890-4A11-9D96-2AB8BC6DBE3A

T., V., & Strikwerda, J. C. (1990). Finite difference schemes and partial differential equations.
In Mathematics of Computation, 55(192). SIAM. https://doi.org/10.2307/2008454

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for
efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30.
https://doi.org/10.1109/MCSE.2011.37

Wijaya, T. T., Zhou, Y., Ware, A., & Hermita, N. (2021). Improving the creative thinking
skills of the next generation of mathematics teachers using dynamic mathematics
software. International Journal of Emerging Technologies in Learning, 16(13), 212–226.
https://doi.org/10.3991/ijet.v16i13.21535

This paper may be cited as:

Dumka, P., Dhananjay, R. M., & Chauhan. R. (2025). Teaching Differential Equations to

Mechanical Engineering Students using Excel VBA. International Journal on
Multidisciplinary and Applied Research, 1(2), 1-13. https://doi.org/10.63236/ijmar.1.1.2

